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The coefficient of kinship between two diploid organisms describes their overall
genetic similarity to each other relative to some base population. For example, kin-
ship between parent and offspring of 1/4 describes gene sharing in excess of random
sharing in a random mating population. In a subdivided population the statistic Fst
describes gene sharing within subdivisions in the same way. Since Fst among human
populations on a world scale is reliably 10 to 15%, kinship between two individuals
of the same human population is equivalent to kinship between grandparent and
grandchild or between half siblings. The widespread assertion that this is small and
insignificant should be reexamined.
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COEFFICIENT OF KINSHIP

It is easy to understand why parental care evolved in many lineages:
parents and offspring share genes so that parental effort devoted to offspring
is in fact effort devoted to the parent’s own genes. Hamilton (1964) formal-
ized this insight and extended it to arbitrary degrees of relationship. When
Hamilton and others described the theory they often spoke in terms of gene
identity by descent, thinking for example of the one half of the nuclear
genes the in a diploid offspring that are identical to those in the parent.
Many authors also spoke of shared genes. Neither of these descriptions is
completely accurate. I may share many genes with, say, an onion, but this
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gene sharing is not relevant to the evolution of social behavior within hu-
mans.

A better way to think of kinship, relationship, and Hamilton’s theory is
to think of gene sharing in excess of random gene sharing. A parent shares
many more than half his genes with an offspring, but in a random mating
population half those genes are surely identical because they came from
the parent, while gene sharing with the other half of the child’s genome is
just what is shared with any random member of the population.

While Hamilton wrote his theory in terms of the coefficient of relation-
ship, most population geneticists reason instead with the coefficient of kin-
ship. Once kinship is known, relationship follows immediately from a sim-
ple formula (Bulmer, 1994).

Here is the definition of kinship between person x and person y: pick
a random gene at a locus from x and let the population frequency of this
gene be p. Now pick a gene from the same locus from y. The probability
that the gene in y is the same as the gene picked from x, py is

py = Fxy + (1 − Fxy)p.

An interpretation of this is that with probability Fxy the genes are the
same, with probability 1 − Fxy they are different, in which case the probabil-
ity of identity is just the population frequency p (Harpending, 1979). Re-
arrangement gives the definition of the coefficient of kinship:

Fxy = (py − p)/(1 − p) (1)

Kinship coefficients in a random mating diploid population are simple
and well known. For example, pick a gene from me, then pick another
gene from the same locus from me. With probability 1/2 we picked the
same gene, while with probability 1/2 we picked the other gene at that
locus. Therefore the probability that the second gene is the same as the first
is just 1/2 + p/2, and substitution of this conditional frequency in the for-
mula for kinship shows that my kinship with myself is just 1/2. The same
reasoning leads to the well known values of 1/4 with my child, 1/8 with
my grandchild, my half-sib, or my nephew, and so on.

It is very important that the coefficient of kinship not be confused with
the coefficient of relationship. These are conceptually and numerically
different creatures. The coefficient of relationship can be thought of as
“fraction of shared genes” between two organisms. This coefficient is fa-
miliar to many biologists since W. D. Hamilton developed his famous
theory of kin selection in terms of the coefficient of relationship. However
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most subsequent development of the theory has been in terms of kinship
coefficients.

In a random mating diploid population the relationship between the
two co-efficients is simple: the coefficient of relationship is just twice the
coefficient of kinship. This simple rule of thumb breaks down as soon as
any complications like inbreeding or population structure are introduced.
The best general definition of the coefficient of relation Rxy between individ-
uals x and y is (Bulmer, 1994)

Rxy = Fxy/Fxx.

where Fxy is the kinship between x and y and Fxx is the kinship of x with
himself. This has the interesting property that it is not necessarily symmet-
ric: Rxy is not in general equal to Ryx.

POPULATION SUBDIVISION

Most of the applications of Hamilton’s theory in biology have used
kinship and relationship derived from genealogical relationships. For exam-
ple, parental care evolves, we think, because parents and offspring share
genes. But gene sharing (in excess of random gene sharing, always) can
arise in other situations. In a subdivided population, individuals share genes
with other members of the same deme, and these shared genes are fuel for
evolution by inclusive fitness effects in exactly the same way that pedigree
relationships like that between parent and child are fuel for evolution by
inclusive fitness effects.

I derive here the relationship between population subdivision and kin-
ship in a very simple case, but the formulae apply much more generally
than this simple derivation implies. At this point I must mention that these
derivations apply to large populations. In the case of small groups (“trait
groups,” as D. S. Wilson calls them) I would have to consider that if we
pick a gene from an individual, the frequency of that gene in the rest of the
deme gene pool is slightly reduced. An exact treatment of small demes
leads to annoying algebraic terms of order 1/n where n is the deme size. I
am concerned with large groups and I ignore these terms.

Consider a population made up of two demes of exactly the same size
and a genetic locus with exactly two alleles. The conclusion of the algebra
below is that the familiar statistic that describes population subdivision, FST,
is precisely kinship between members of the same deme. In other words
genetic differences between demes imply genetic similarity within demes,
and FST is just the coefficient of kinship between members of the same deme
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due to the population structure. For example FST among human populations
is about 1/8, and this is just the coefficient of kinship in a single population
between grandparent and grandchild, uncle and nephew, or half-sibs. In a
diverse world, members of the same population are related to each other
to the same degree that grandparents and grandchildren are related to each
other in a single population.

There are two demes of equal size labelled A and B. At a locus the
frequency of a gene is pA in deme A and pB in deme B. The frequencies in
the two demes of the alternate allele are qA and qB. The overall mean fre-
quencies are simply p and q. It is convenient to use a slightly different
notation to describe the gene frequencies:

pA = p + δ

pB = p − δ

so of course

qA = q − δ

qB = q + δ

Now imagine that we pick a gene at random from the population, then
pick another gene from the same locus from the same deme. What is the
coefficient of kinship within demes? In order to find this we use the formula
(1) above.

With probability 1/2 we pick someone from population A initially, and
with probability pA we pick the allele whose frequency is pA. With probabil-
ity qA = 1 − pA we pick the alternate allele. Putting these possibilities into
equation (1) we have

F = (1/2)pA(pA − p)/q + (1/2)pB(pB − p)/q + (1/2)qA(qA − q)/

p + (1/2)qB(qB − q)/p

Using the substitutions above, this becomes

F = {(p + δ)(δ) + (p − δ)(−δ)}/2q + {q − δ)(−δ) + (q + δ)(δ)}/2p

= 2δ2/2q + 2δ2/2p

and since p + q = 1
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F = 4δ2/4pq

= δ2/pq

This is simply the FST genetic distance between the two populations—
the variance of the gene frequency divided by the mean gene frequency
multiplied by its complement. When FST is reported for a collection of popu-
lations, it is essentially an average of all the pairwise population FST statis-
tics. The statistic is computed for each allele at each locus, then averaged
over all loci.

Many studies agree that FST in world samples of human populations is
between ten and fifteen percent. If small long-isolated populations are in-
cluded, the figure is usually somewhat higher. A conservative general figure
for our species is FST ! 0.125 = 1/8. This number was given by Cavalli-
Sforza in 1966, and a widely cited paper by Lewontin (1972) argued at
length that this is a small number implying that human population differ-
ences are trivial. An alternative perspective is that kinship between grand-
parent and grandchild, equivalent to kinship within human populations,
is not so trivial. For further discussion see Klein and Takahata (2002, pp.
387–390).

Kinship in a Subdivided Population

Equation 1 and its derivation shows that if we pick a gene at random
from a population of two demes and find that that its overall frequency is
p, then the frequency of that gene in the same deme is on average

psame = p + (1 − p)FST

while the frequency of that gene in the other deme is on average

pother = p − (1 − p)FST.

Using equation 1 and these relations we can derive kinship and rela-
tionship coefficients within and between demes easily.

An individual’s coefficient of kinship with someone from his own
deme is just FST while his kinship with someone from the other deme is
−FST. What about kinship with oneself in a subdivided population? Pick a
gene from an individual, then pick another at random from the same indi-
vidual: with probability 1/2 we picked the same gene and with probability
1/2 we picked the other one, in which case the probability it is the same is
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p + (1 − p)FST . Therefore

pself = 1/2(1 + p + (1 − p)FST)

Using equation 1, we find that

Fself = 1/2(1 + FST)

rather than the simple 1/2 kinship with self in a single random mating popu-
lation. It is simple to derive familiar family kinship coefficients in the same
way: for example kinship with a child when the other parent is from the
same deme is

Fchild = 1/4 + 3FST /4

and so on. In general, if the kinship in a random mating population with a
relative is 1/x, then in a subdivided population the kinship with that same
relative is

Frelative of degree x = 1/x + (1 − x)FST /x (2)

What about kinship with a relative who is a hybrid between the popu-
lations? Consider, for example, a child whose other parent is from the other
deme. Pick a gene from the parent: the probability of picking the same
gene from the child is 1/4, the probability of picking a gene from the child
not identical to the first but from the same deme as the parent is 1/4, and
the probability of picking a gene from the other deme is 1/2. Putting these
together, the probability of the picking the same gene is

phybrid offspring = 1/4 + 1/4(p + (1 − p)FST) + 1/2(p − (1 − p)FST).

Using equation 1, this becomes

Fhybrid offspring = 1/4 − FST /4.

In general the same derivations shows that kinship with a hybrid rela-
tive of degree x, meaning a relative with whom kinship in a random mating
population would be x, is

Fhybrid relative of degree x = 1/x − FST /x. (3)
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The difference between equations 2 and 3 is just FST, the difference
between kinship with an intra-demic relative and a hybrid relative. Notice
also that as x becomes large, equation 2 shows that kinship with a random
member of the same deme is FST and kinship with an otherwise unrelated
hybrid offspring is 0.
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